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1 Introduction

Chia’s underlying verifiable delay function (VDF) performs squaring computations within class
groups of binary quadratic forms. This paper provides an introduction to binary quadratic forms
and to their properties relevant to application in the Chia VDF, and an efficient algorithm for their
composition is introduced.

A VDF is a sequential operation that takes a prescribed amount of time to compute (and which
cannot be accelerated by parallelism) and which produces an accompanying proof by which the
result may be quickly verified. The best known method for achieving a non-parallelizable sequential
operation is repeated squaring in a group of unknown order. The unknown order requirement is
due to the divisibility of the order of a finite group by the order of any element in the group; if the
group order is known then the repeated squaring operation could be reduced modulo the order of
the group, shortcutting the computation.

When using an RSA group in a VDF, the group is a multiplicative group Z/N , where N = pq such
that p and q are primes, p, q 6= 2, and p and q are both unknown. Z/N is considered a group of
unknown order because the difficulty of computing the group order is on par with the difficulty of
computing the factors of N . To guarantee that the factors — and therefore the group order — are
indeed unknown, a trusted setup may be used which ensures that the factors used to generate the
group are not revealed.1 However, a trusted setup requires that the party generating the trusted
parameters destroys the keys once N is created. If such a party were malicious and otherwise fails
the destroy the keys, the VDF’s sequentiality requirement could be broken.

In contrast, using class groups of binary quadratic forms omits the trusted setup because the order
of the class group of a negative prime discriminant d, where |d| ≡ 3 mod 4, is believed to be difficult
to compute when |d| is sufficiently large, making the order of the class group effectively unknown.
Therefore, a suitable discriminant — and its associated class group — can be chosen without the
need for a trusted setup, which is a major advantage for using class groups in applications requiring
groups of unknown order.

The study of class groups is typically presented either in the context of binary quadratic forms or
in the context of fractional ideals of algebraic number fields.2 The ideal class group of an algebraic
number field K is the quotient group JK/PK , where JK is the group of fractional ideals of the ring of
integers, OK , of K, and PK is its subgroup of principal fractional ideals. While many feel that this
provides a more conceptually intuitive introduction to class groups, the representation of elements

1Alternatively, RSA keys may be generated by multi-party protocols or by using an RSA modulus for which the
prime factors are believed to be lost.

2See Appendix 7.3 for definitions of the following terms appearing in this paragraph: algebraic number field,
quotient group, fractional ideal, ring of integers, and principal fractional ideal.
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of a class group and the implementation of the group operation are best carried out through binary
quadratic forms, so in this paper I limit the scope of my discussion to form class groups.

The theorems here will often be presented without proof. Please see the References section for
resources containing proofs of the theorems and for additional information about class groups and
binary quadratic forms.

2 Background

Throughout this paper, recall that R represents the set of real numbers, Z represents the set of
integers, and Q represents the set of rational numbers.

Definition 2.1 (Binary quadratic form). A binary quadratic form is

f(x, y) = ax2 + bxy + cy2

where a, b, c ∈ R and a, b, c are not all equal to zero.

We write f = (a, b, c) and call f a form. These are the objects that we will be working with
throughout this paper.

Definition 2.2 (Integral form). An integral form is a binary quadratic form where a, b, c ∈ Z.

Integral binary quadratic forms are of key importance in algebraic number theory, and they are the
relevant forms to the Chia VDF. The remainder of this handout will focus solely on integral forms.

Definition 2.3 (Content of a form). Denoted by cont(f), the content of a form is

cont(f) = gcd(a, b, c)

Definition 2.4 (Primitive form). A form f is called primitive if cont(f) = 1.

2.1 Discriminant

Definition 2.5 (Discriminant). The discriminant of a form f is ∆(f) = b2 − 4ac.

One can easily check that if f = (a, b, c) is an integral form, then b and ∆(f) always share the same
parity, i.e. b ≡ ∆(f) mod 2.

Note that because the square of an integer is always congruent to 0 or 1 mod 4, the discriminant of
an integral binary quadratic form is always congruent to 0 or 1 mod 4.3

Further, any integer which is congruent to 0 or 1 mod 4 is the discriminant of a binary quadratic
form. This is easy to see by considering the form

3Every integer is congruent to 0, 1, 2, or 3 mod 4. Therefore, every square of an integer is congruent to 0, 1, 4, or
9 mod 4, but because 4 and 9 are congruent to 0 and 1 mod 4 respectively, every square is therefore congruent to 0
or 1 mod 4.
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(
1, d mod 4, (d mod 4)−d

4

)
For d ≡ 0 or 1 mod 4, observe that this form will always be integral, and its discriminant, ∆(f), is
equal to d. We then have the following theorem.

Theorem 2.1. Given ∆ ∈ Z, there is at least one integer binary quadratic form with discriminant
∆ if and only if ∆ ≡ 0 or 1 mod 4.

Definition 2.6 (Fundamental discriminant). For ∆ ∈ Z, ∆ is a fundamental discriminant if and
only if:

1. ∆ ≡ 1 mod 4 and ∆ is square-free,4 or

2. ∆ ≡ 0 mod 4, ∆
4 ≡ 2, 3 mod 4, and ∆

4 is square-free

Fundamental discriminants are exactly those values which are discriminants of quadratic fields.5

Definition 2.7 (Positive semi-definite binary quadratic form). A binary form is called positive semi-
definite if for any (x, y) ∈ R2 with (x, y) 6= (0, 0), the value f(x, y) is non-negative, i.e. f(x, y) ≥ 0.

Definition 2.8 (Negative semi-definite binary quadratic form). A binary form is called negative
semi-definite if for any (x, y) ∈ R2 with (x, y) 6= (0, 0), the value f(x, y) is non-positive, i.e. f(x, y) ≤
0.

Definition 2.9 (Positive definite binary quadratic form). A binary form is called positive definite
if for any (x, y) ∈ R2 with (x, y) 6= (0, 0), the value f(x, y) is positive, i.e. f(x, y) > 0.

Definition 2.10 (Negative definite binary quadratic form). A binary form is called negative definite
if for any (x, y) ∈ R2 with (x, y) 6= (0, 0), the value f(x, y) is negative, i.e. f(x, y) < 0.

Definition 2.11 (Indefinite binary quadratic form). A binary form is called indefinite if for any
(x, y) ∈ R2 with (x, y) 6= (0, 0), the value f(x, y) takes on both positive and negative values.

The forms relevant to the Chia VDF are positive definite forms. Therefore we take note of the
following theorem.

Theorem 2.2. A form f is positive definite if and only if ∆(f) < 0 and a > 0.

4A square-free integer is one which is not divisible by any perfect squares, i.e. there are no repeated factors in its
prime decomposition.

5See Appendix 7.3 for the definition of quadratic field.
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2.1.1 A brief detour to build intuition about discriminants

The quantity b2 − 4ac should look familiar. You likely first saw it as the content under the square
root in the quadratic formula,

x = −b±
√
b2−4ac

2a

Recall that the quadratic formula helps us solve single-variable quadratic equations that are too
difficult to factor, giving the two roots of the associated single-variable quadratic expression. If we
set the expression equal to y and consider the represented curve, the roots are the points in the
plane where the curve touches the x-axis.

In the quadratic formula, what happens when b2 − 4ac = 0? The square root reduces to zero, and
we are left with x = −b

2a . Hence, there is only one (repeated) root. Graphically, this is the case
in which the curve grazes the x-axis at a single point. Relative to binary quadratic forms, these
discriminants correspond to those semi-definite binary quadratic forms for which f(x, y) = 0 for
some (x, y) 6= (0, 0). (See definitions 2.7 and 2.8 and Figure 1.)

When b2 − 4ac < 0, the quantity under the square root is negative and the roots are complex.
Therefore, the curve has no roots on the real x-axis and the x-axis is never crossed. This gives
a curve which is entirely positive or entirely negative. These cases analogously correspond to the
definite binary quadratic forms. (See definitions 2.9 and 2.10 and Figure 1.)

Finally, when b2−4ac > 0, two real roots exist, and the curve crosses the x-axis at two points, leading
to at least one positive and at least one negative value along the curve. These cases analogously
correspond to indefinite binary quadratic forms. (See definition 2.11 and Figure 1.)

Figure 1: Analogous correspondences between binary quadratic forms (purple text) and single-
variable quadratic curves (blue and red curves).

2.2 Matrix representations of forms

Definition 2.12 (Matrix of a form). The matrix of a form f = (a, b, c) is
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M(f) =

(
a b/2
b/2 c

)
with det(M(f)) = ac− b2

4 .

Using its matrix form, and defining

X =
(
x y

)
f(x, y) can be written as

f(x, y) = X M(f)X>

=
(
x y

)( a b/2
b/2 c

)(
x
y

)
= ax2 + bxy + cy2

The discriminant of f is given by

∆(f) = −4 det(M(f))

= b2 − 4ac

2.3 Representation of integers

Consider the equation

ax2 + bxy + cy2 = n

where n ∈ Z and f = (a, b, c) is an integral binary quadratic form.

Definition 2.13 (A representation of n by f). For a given f and n, a solution (x, y) ∈ Z2 to the
above equation is called a representation of n by f .

Definition 2.14 (A proper representation of n by f). For a given f and n, a solution (x, y) ∈ Z2

to the above equation, such that gcd(x, y) = 1, is called a proper representation of n by f .

Notice that we can restrict our representation considerations to primitive forms. This is because if
the content of f is k 6= 1, i.e. gcd(a, b, c) = k for some k 6= 1 such that, say, a = kA, b = kB, and
c = kC, then we could factor out k from the lefthand side of the equation, which would mean that
n, on the righthand side, is also divisible by k.

Theorem 2.3. If ∆(f) < 0 and if n ∈ Z, then the equation ax2 + bxy + cy2 = n has only finitely
many solutions, and x and y are bounded by

x2 ≤ 4cn
|∆| and y2 ≤ 4an

|∆|

5



To find all of the solutions to such an equation where ∆(f) < 0 and n ∈ Z, one could test for each
solution (x, y) which obeys the constraints given above.

Example 2.1. Solve the equation

2x2 + xy + 3y2 = 18.

Notice that

∆(f) = b2 − 4ac

= 12 − 4(2)(3)

= −23

Therefore

x2 ≤ 4(3)(18)
|−23| = 216

23 ≈ 9.391... and y2 ≤ 4(2)(18)
|−23| = 144

23 ≈ 6.261...

And so

|x| ≤ 3 and |y| ≤ 2

Testing all pairs of (x, y) which satisfy those constraints, we find that the representations of 18 by
f = (2, 1, 3) are (−3, 0), (−3, 1), (3,−1), and (3, 0). �

3 Equivalence

This section covers equivalence between forms. If two forms are equivalent then they represent the
same integers, although the inverse is not necessarily true. There are two types of equivalence: wide
equivalence and proper equivalence.

Definition 3.1 (Wide equivalence). Two forms f(x, y) = ax2 + bxy + cy2 and g(x, y) = Ax2 +
Bxy + Cy2 are widely equivalent if there is an invertible change of variables

x′ = rx+ sy, y′ = tx+ uy

with r, s, t, u ∈ Z and ru− st = ±1, such that

a(x′)2 + bx′y′ + c(y′)2 = Ax2 +Bxy + Cy2

or, in other words, g(x, y) = f(rx+ sy, tx+ uy).

Definition 3.2 (Proper equivalence). Two forms f(x, y) = ax2 + bxy + cy2 and g(x, y) = Ax2 +
Bxy + Cy2 are properly equivalent if the wide equivalence conditions hold and also ru− st = +1.

Given these definitions, a change of variables of a wide equivalence relation can be represented by a
matrix6

6See Appendix 7.1 for definitions of GL(2,Z) and SL(2,Z).
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T =

(
r s
t u

)
∈ GL(2,Z)

and a change of variables of a proper equivalence relation can be represented by the matrix

U =

(
r s
t u

)
∈ SL(2,Z)

In either case, we can write (
x′

y′

)
=

(
r s
t u

)(
x
y

)
to describe the change of variables. The invertibility requirement of the change of variables is what
imposes the constraint that ru − st = ±1 (in the case of wide equivalence, or ru − st = +1 in the
case of proper equivalence) because only those 2× 2 matrices whose determinant is equal to ±1 are
invertible.

We will restrict our discussion to proper equivalence. What follows does not necessarily generalize
to wide equivalence, and in particular to cases where the matrix is in GL(2,Z) \ SL(2,Z).

We can express form equivalence and the change of variables using the matrix representation of

forms, i.e. M(f) =

(
a b/2
b/2 c

)
.

Suppose that two forms f(x, y) = ax2 + bxy + cy2 and g(x, y) = Ax2 + Bxy + Cy2 are properly
equivalent. Then we have

g(x, y) =
(
x y

)
M(g)

(
x
y

)
=
(
x y

)( A B/2
B/2 C

)(
x
y

)
=
(
x y

)(r t
s u

)(
a b/2
b/2 c

)(
r s
t u

)(
x
y

)
=
(
x y

)
U> M(f) U

(
x
y

)

Therefore, M(g) = U> M(f) U .

Further, observe that

f

((
r s
t u

)(
x
y

))
= f(rx+ sy, tx+ uy)

= a(rx+ sy)2 + b(rx+ sy)(tx+ uy) + c(tx+ uy)2

For ease of notation, define (fU)(x, y) = f

((
r s
t u

)(
x
y

))
, and note that
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M(fU) = U> M(f) U

We can then state a second definition for proper equivalence as the following.

Definition 3.3 (Proper equivalence). Two forms f and g are properly equivalent if g = fU for some
U ∈ SL(2,Z). The SL(2,Z)-orbit of a form is called the proper equivalence class of that form.7

Notice that because SL(2,Z) is a group (and associative under matrix multiplication), equivalence
is transitive. To see this, consider three forms f(x, y), g(x, y), and h(x, y), and let g = fU and
h = gV , where U, V ∈ SL(2,Z). Then

M(h) = V > M(g) V

= V > U> M(f) U V

= W> M(f) W

where W = UV ∈ SL(2,Z) and W> = V >U> ∈ SL(2,Z). Therefore h = fW , where W ∈ SL(2,Z).

4 The class group

We can now say a bit more about the connection between ideal class groups and form class groups.

Take a negative discriminant ∆ and let F (∆) be the set of primitive positive definite binary quadratic
forms ax2 + bxy + cy2 whose discriminant is ∆. Define a proper equivalence relation ∼ on F (∆)
such that f ∼ g when g = fU for U ∈ SL(2,Z). This breaks up F (∆) into a set of equivalence
classes, C(∆) = F (∆)/ ∼.

Now consider a quadratic extension field K = Q(
√
d), where d is square-free.8 If d ≡ 1 mod 4, then

the discriminant of K is ∆ = d. Otherwise, the discriminant of K is ∆ = 4d. Let OK be the ring
of integers of K, and let JK be the group of fractional ideals of the ring of integers OK . PK is the
subgroup of JK consisting of principal fractional ideals. We define the ideal class group of K as the
quotient group Cl(K) = JK/PK .

The connection between these two types of class groups — and therefore between binary quadratic
forms and ideals in quadratic fields — involves bijections between special versions of each type of
class group, the details of which depend upon whether the discriminant in question is positive or
negative.9 For a real quadratic field K = Q(

√
d) with discriminant ∆K > 0, there is a bijection

between the narrow ideal class group of K and the form class group of primitive integral binary
quadratic forms of discriminant ∆K .10 And for an imaginary quadratic field K = Q(

√
d) with

discriminant ∆K < 0, there is a bijection between the ideal class group of K and the form class
group of primitive positive-definite integral binary quadratic forms of discriminant ∆K .

7See Appendix 7.2 for discussion on orbits. Essentially, this statement means that the proper equivalence class of
a form is the set of all forms given by computing U>M(f) U for all of the U ∈ SL(2,Z).

8See Appendix 7.3 for definitions of the following terms in this paragraph: quadratic extension field, ring of integers,
fractional ideal, principal fractional ideal, quotient group.

9A bijection is a mapping that is both injective and surjective; in other words, every element in the mapping’s
codomain is mapped to by exactly one element in the mapping’s domain.

10The narrow ideal class group is such that P+
K , the group of totally positive principal fractional ideals of K, is

used instead of PK in the class group quotient group.
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5 Reduction

This section introduces normal forms and reduced forms and give algorithms for normalization and
reduction.

5.1 Normal forms

Definition 5.1 (Normal form). A form f = (a, b, c) is called normal if −a < b ≤ a.

Definition 5.2 (Normalization operator). We define the normalization operator η(f) as

η(f) = η(a, b, c)

= (a, b+ 2ra, ar2 + br + c)

where r =
⌊
a−b
2a

⌋
.

For f = (a, b, c) with ∆(f) < 0 and a > 0, let fnorm = (a′, b′, c′) be the normalized form of f . Then
fnorm = η(f).

Notice that f = (a, b, c) and fnorm = (a′, b′, c′) are in the same proper equivalence class by Definition
3.3 with matrix

U =

(
1 r
0 1

)

5.1.1 Normalization algorithm

Given a primitive positive definite form f = (a, b, c), such that ∆ < 0 and a > 0, the
normalization algorithm is:

1. Compute r =
⌊
a−b
2a

⌋
.

2. Set η(f) = (a, b+ 2ra, ar2 + br + c), and update f = η(f).

3. Return f , which is now normalized.

Example 5.1. Normalize the form f = (11, 49, 55). Note that it is not normal because b > a.

First compute r:
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r =

⌊
a− b

2a

⌋
=

⌊
11− 49

2(11)

⌋
=
⌊
−1.72

⌋
= −2

Then compute η(f):

η(f) = η(a, b, c)

= (a, b+ 2ra, ar2 + br + c)

= (11, 49 + 2(−2)(11), 11(−2)2 + 49(−2) + 55)

= (11, 5, 1)

And so the normalization of f = (11, 49, 55) is fnorm = (11, 5, 1). �

Note that in Example 5.1 the discriminant of both f and fnorm is −19. Normalizing a form does
not change its discriminant.

5.2 Reduced forms

Definition 5.3 (Reduced form). A positive definite form f = (a, b, c) is called reduced if it is normal
and a ≤ c, and if a = c then b ≥ 0.

Reduction of forms is important to the Chia VDF because frequently reducing f(a, b, c) as f is
repeatedly squared keeps a, b, and c from growing too large and because reduction identifies a
canonical group element for each equivalence class.

For any given ∆ < 0, each proper equivalence class of binary quadratic forms of that discriminant
contains a unique reduced representative. We can therefore know certain properties of a discriminant,
such as its class number, by studying only the reduced forms in the class group of that discriminant.

Given a reduced form with ∆ < 0, we have

|∆| = 4ac− |b|2 (∆ < 0)

≥ 4a(a)− a2 (−a < b ≤ a, a ≤ c)
≥ 3a2

and so

a ≤
√
|∆|
3
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Therefore, for a given ∆ < 0, there are finitely many a, and consequently there are finitely many b
and c.11 This means that negative discriminants have a finite number of reduced forms and therefore
have a finite number of equivalence classes.

Theorem 5.1. Each primitive positive definite form f is properly equivalent to a unique reduced
form.

Definition 5.4 (Principal form of discriminant ∆). Let ∆ be a negative integer such that ∆ ≡
0, 1 mod 4, i.e. ∆ is a negative discriminant. Let k = ∆ mod 2. Then

f =
(

1, k, k
2−∆
4

)
is the unique reduced form (1, b, c) of discriminant ∆. This particular reduced form is called the
principal form of discriminant ∆.

Example 5.2. Here are examples of principal forms of several discriminants.

∆ = −3 (1, 1, 1) ∆ = −4 (1, 0, 1)
∆ = −7 (1, 1, 2) ∆ = −8 (1, 0, 2)

∆ = −11 (1, 1, 3) ∆ = −15 (1, 1, 4)
∆ = −19 (1, 1, 5) ∆ = −20 (1, 0, 5) �

Definition 5.5 (Principal class of discriminant ∆). The equivalence class of the principal form of
discriminant ∆ is called the principal class of discriminant ∆.

The principal class of a discriminant ∆ is the identity element of the form class group of ∆ with
respect to form composition.12

Example 5.3. Consider the discriminant ∆ = −23. This discriminant has a total of three equiva-
lence classes of positive definite binary quadratic forms. Therefore its class number is 3. In partic-
ular, the three unique reduced representatives of the equivalence classes are

(1, 1, 6), (2,−1, 3), and (2, 1, 3).

The principal form is (1, 1, 6), and therefore this form (as a representative of the principal equivalence
class) acts as the identity when composed with other forms with ∆ = −23. Every primitive positive
definite binary quadratic form with ∆ = −23 is properly equivalent to one of the three forms above,
and composition in the group boils down to composition between these three forms. �

Definition 5.6 (Reduction operator). Given a form f = (a, b, c), the reduction operator ρ(f) is
defined as

ρ(f) = ρ(a, b, c)

= (c,−b+ 2sc, cs2 − bs+ a)

11Because |b| ≤ a and c =
(

b2−∆
4a

)
.

12Form composition is defined in Section 6.
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where s =
⌊
c+b
2c

⌋
.

For f = (a, b, c) with ∆(f) < 0 and a > 0, let fred = (a′, b′, c′) be the reduced form of f . Then
fred = ρ(f).

Notice that ρ(a, b, c) is equivalent to η(c,−b, a), the normalization of (c,−b, a). Notice, too, that
f = (a, b, c) and fred = (a′, b′, c′) are in the same proper equivalence class by Definition 3.3 with
matrix

U =

(
0 −1
1 r

)

5.2.1 Reduction algorithm

Given a form f = (a, b, c) such that ∆ < 0 and a > 0, the reduction algorithm is:

1. Normalize f and update f = fnorm.

2. If f is reduced, return f . If f is not reduced, compute s =
⌊
c+b
2c

⌋
; set ρ(f) = (c,−b +

2sc, cs2 − bs+ a); and update f = ρ(f).

3. Repeat step 2 until a reduced form is produced.

Example 5.4. Reduce the form f = (11, 49, 55). We first normalize it, which we did in Example
5.1, finding that fnorm = (11, 5, 1). Solving Example 5.1 is equivalent to performing step 1 of the
reduction algorithm.

But f = fnorm is not yet reduced because a > c. We implement the reduction step until we reach a
reduced form.

Compute s:

s =

⌊
c+ b

2c

⌋
=

⌊
1 + 5

2(1)

⌋
= b3c
= 3

Compute ρ(f):

ρ(f) = (c,−b+ 2sc, cs2 − bs+ a)

= (1,−5 + 2(3)(1), 1(3)2 − 5(3) + 11))

= (1, 1, 5)

This form is reduced and so (1, 1, 5) is the reduced form of (11, 49, 55). Notice that, of course, the
discriminant of all three forms, f , fnorm, and fred, is −19. �
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5.2.2 An upper bound on the number of reduction steps

In considering implementation of the reduction algorithm in the Chia VDF, it is helpful to get a
sense of how many steps of the reduction algorithm will be required to produce a reduced form.

Here we set an upper bound on that number. This discussion addresses three cases: (i) a <

√
|∆|
2 ,

(ii)

√
|∆|
2 ≤ a <

√
|∆|, and (iii) a ≥

√
|∆|. At the end of this section is a summary of the results.

Let f = (a, b, c) be a normalized form. By ∆(f) = b2 − 4ac,

c = b2−∆(f)
4a = b2+|∆(f)|

4a .

If a <

√
|∆|
2 , then

c = b2−∆(f)
4a = b2+|∆(f)|

4a ≥ |∆(f)|
4a > a2

a = a

and so c > a and f is reduced.

Assume that

√
|∆|
2 ≤ a <

√
|∆| and that f is not reduced. Then either a > c, or a = c and b < 0.

If a = c and b < 0, then by a = c and f is normal, −c < b < 0. Therefore

0 < c+ b < c⇒ 0 < c+b
2c < 1⇒

⌊
c+b
2c

⌋
= 0

and so s =
⌊
c+b
2c

⌋
= 0 and a single step of the reduction algorithm will produce the form

ρ(f) = (c,−b+ 2sc, cs2 − bs+ a) = (c,−b, a)

which is reduced.

Assume instead that a > c. Then if c <

√
|∆|
2 , ρ(f) = (a′, b′, c′) = (c,−b + 2sc, cs2 − bs + a) is

reduced because a′ = c <

√
|∆|
2 and, as noted above, given a form f = (a, b, c), a <

√
|∆|
2 guarantees

a reduced form.

So assume now that a > c and c ≥
√
|∆|
2 . Then 2c ≥

√
|∆|. Because f is normalized, |b| ≤ a and

therefore |b| <
√
|∆|. Then −1 < b

2c < 1, and, noting that c+b
2c = 1

2 + b
2c , we find that − 1

2 <
c+b
2c < 3

2 .

Therefore s =
⌊
c+b
2c

⌋
has one of three possible values: 0, ±1. (Note that in the case of s = ±1, s has

the same sign as b.) Let ρ(f) = (a′, b′, c′) = (c,−b+ 2sc, c− |b|+ a). If s = 0, then ρ(f) = (c,−b, a)
which is reduced. In the case of s = ±1, ρ(f) = (c,−b+ 2sc, c− |b|+ a). Because f is normalized,
it is either the case that |b| < a or b = a. If |b| < a, then c − |b| + a > c ⇒ c′ > a′ and so ρ(f) is

reduced. If b = a, then s = 1 and ρ(f) = (c,−a+ 2c, c). We have assumed here that c ≥
√
|∆|
2 and√

|∆| > a, and so −a+ 2c > 0. Therefore a′ = c′ and b′ > 0, and ρ(f) is reduced.

We now find an upper bound on the number of reduction steps needed for the reduction algorithm
to produce a reduced form, given an input form f = (a, b, c) with a ≥

√
|∆|.

Assume that a ≥
√
|∆|. Then, noting that b2 ≤ a2 because f is normalized,

c = b2−∆(f)
4a = b2+|∆(f)|

4a ≤ a2+a2

4a = a
2

13



and so c ≤ a
2 . Therefore, where ρ(f) = (a′, b′, c′) = (c,−b+2sc, cs2−bs+a), we find that a′ = c ≤ a

2 .

If a′ ≥
√
|∆|, then a second step of the reduction algorithm will find that for ρ(ρ(f)) = (a′′, b′′, c′′),

a′′ = c′ ≤ a′

2 ≤
a
4 . If a′′ ≥

√
|∆|, then a third application yields a′′′ = c′′ ≤ a′′

2 ≤
a′

4 ≤
a
8 . And so on.

This gives an upper bound of log2

(
a√
|∆|

)
+ 1 reduction algorithm steps needed to produce a form

such that its a term is less than
√
|∆|. Then, as shown above, one additional step of the reduction

algorithm will yield a reduced form. Therefore, given a form f = (a, b, c), a maximum number of

log2

(
a√
|∆|

)
+ 2 steps will be required to produce a reduced form.

In summary, if f = (a, b, c) is a normalized form, then

• If a <

√
|∆|
2 , then f is reduced.

• If

√
|∆|
2 ≤ a <

√
|∆|, then ρ(f) is reduced.

• If a ≥
√
|∆|, then a maximum of log2

(
a√
|∆|

)
+ 2 steps will be required to produce a reduced

form.

6 Composition

Originally developed by Gauss, composition of binary quadratic forms is a commutative operation
on the class group. Others, such as Arndt, Dirichlet, and Bhargava, have contributed to the topic,
and various algorithms have been developed for its implementation. In this section I motivate and
outline the details of composition, and then I lay out the basic structure of the algorithm.

6.1 Explaining composition

To begin, note that we only perform composition between forms which have the same discriminant.
This should make sense because we are operating within the class group of a particular discriminant,
and although the objects we are operating on are integer 3-tuples, (a, b, c), which represent binary
quadratic forms, the more abstract objects being operated upon are the equivalence classes of the
class group. Analogously, when we add the rational numbers 20

12 and 5
35 , what we are fundamentally

working with are the fraction equivalence classes whose “reduced representatives” are 5
3 and 1

7 .

To understand the basic idea behind composition, consider two binary quadratic forms

f1 = ax2
1 + bx1y1 + cy2

1 and f2 = αx2
2 + βx2y2 + γy2

2

Note that we consider (x1, y1) and (x2, y2) as independent sets of variables.

We then would like to find a form f3 such that

f1f2 = f3

14



Multiplying f1 and f2, we find that

f1f2 = aαx2
1x

2
2 + aβx2

1x2y2 + aγx2
1y

2
2 + bαx1y1x

2
2 + bβx1y1x2y2

+ bγx1y1y
2
2 + cαy2

1x
2
2 + cβy2

1x2y2 + cγy2
1y

2
2

We want the righthand side of the equation to resemble a binary quadratic form such that

f1f2 = AX2 +BXY + CY 2 = f3

for some A, B, C ∈ Z.

We do this by using a change of variables such that X and Y are linear combinations of x1x2, x1y2,
y1x2, and y1y2:

X = jx1x2 + kx1y2 + ly1x2 +my1y2, Y = rx1x2 + sx1y2 + ty1x2 + uy1y2

for some j, k, l,m, r, s, t, u ∈ Z. The goal of our algorithm is to find A, B, and C by finding
appropriate integer values for j, k, l,m, r, s, t, u.

We find j, k, l,m, r, s, t, u as follows. Define g = 1
2 (b+β) and h = − 1

2 (b−β). Define w = gcd(a, α, g).
Then define the matrix

M =

(
j k l m
r s t u

)
with submatrices

M1 =

(
j k
r s

)
, M2 =

(
j l
r t

)
, M3 =

(
j m
r u

)
,

M4 =

(
k l
s t

)
, M5 =

(
k m
s u

)
, M6 =

(
l m
t u

)

Set the values j, r, s, t, and u to be

j = w, r = 0, s = a
w , t = α

w , u = g
w

and find k, l, and m using the following set of conditions:

1. det(M4) = kt− ls = h

2. det(M5) = ku−ms = γ

3. det(M6) = lu−mt = c

To solve this set of equations, we create an augmented matrix and row reduce.t −s 0 h
u 0 −s γ
0 u −t c

 ←−
←−

⇒

t −s 0 h
0 u −t c
u 0 −s γ

 | · 1/t| · 1/u

⇒

1 −s/t 0 h/t
0 1 −t/u c/u
u 0 −s γ

 ←−s/t+

⇒

1 0 −s/u (hu+ cs)/tu
0 1 −t/u c/u
u 0 −s γ


←−

−u

+

⇒

1 0 −s/u (hu+ cs)/tu
0 1 −t/u c/u
0 0 0 γ − (hu+ cs)/t


15



In order for this matrix to have solutions, it must be the case that γ− (hu+ cs)/t = 0.13 Let’s check

to see if γ − hu+cs
t

?
= 0:

γ − hu+ cs

t
= γ −

h gw + c aw
α
w

= γ − gh+ ac

α

= γ −
(

1
2 (b+ β)

) (
− 1

2 (b− β)
)

+ ac

α

= γ −
(
− 1

4b
2 + 1

4β
2
)

+ ac

α

=
1

α

(
αγ +

1

4
b2 − 1

4
β2 − ac

)
=

1

4α

(
4αγ + b2 − β2 − 4ac

)
=

1

4α

((
b2 − 4ac

)
−
(
β2 − 4αγ

))
=

1

4α
(0) [ because ∆(f1) = ∆(f2) ]

= 0

Therefore, our row-reduced matrix is1 0 −s/u (hu+ cs)/tu
0 1 −t/u c/u
0 0 0 0


This matrix corresponds to the following system of equations:

1. k − s
um = hu+cs

tu

2. l − t
um = c

u

3. 0 = 0

We can parameterize the system, with ξ as the parameter, and we find that the system has infinite
solutions of the following form:

k = s
uξ + hu+cs

tu , l = t
uξ + c

u , and m = ξ

We need to choose a form of ξ such that k, l, and m are integers.

Putting ξ in terms of k, we have

ξ = tuk−hu−cs
st

To ensure that the fraction on the righthand side is an integer, we solve the congruence14

13Note that because the reduced binary quadratic forms relevant to Chia are positive definite forms, a > 0, and so
t 6= 0.

14See Appendix 7.4 for one method of solving a congruence of this form.
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(tu)k ≡ hu+ sc mod st

which produces a set of solutions of the form k = µ+ νn, where µ, ν ∈ Z and n ranges over all of Z.
Any choice of n will yield integer values for k and m, but some n values may produce a non-integer
value for l, so we now find an appropriate n value which guarantees l ∈ Z. Putting l in terms of n,
we have

l =
t

u
ξ +

c

u

=
tk − h
s

=
t(µ+ νn)− h

s

=
(tν)n+ (tµ− h)

s

We want the fraction on the righthand side to equal an integer, so we solve the congruence

(tν)n ≡ h− tµ mod s

which gives a set of solutions of the form n = λ + σn′, where λ, σ ∈ Z and n′ ranges over all of Z.
We choose n′ = 0 and let n = λ.

We can now find k, l, and m by

k = µ+ νλ, l = kt−h
s , and m = tuk−hu−cs

st

and these values are guaranteed to be integers. Notice that because s = a
w and t = α

w , and because
a and α are never equal to 0, it will always be the case that s, t 6= 0, and so k, l, and m will always
be defined.

Finally, f3 = AX2 +BXY + CY 2 is given by15

A = st− ru, B = (ju+mr)− (kt+ ls), C = kl − jm

To verify that f3 indeed equals f1f2, expand f3 using X = jx1x2 + kx1y2 + ly1x2 + my1y2 and
Y = rx1x2 + sx1y2 + ty1x2 + uy1y2. After grouping together common terms, we end up with:

f3 = (Aj2 +Bjr + Cr2)x2
1x

2
2 + (2Ajk +B(js+ kr) + 2Crs)x2

1x2y2

+ (Ak2 +Bks+ Cs2)x2
1y

2
2 + (2Ajl +B(jt+ lr) + 2Crt)x1y1x

2
2

+ (2A(jm+ kl) +B(ju+ kt+ ls+mr) + 2C(ru+ st))x1y1x2y2

+ (2Akm+B(ku+ms) + 2Csu)x1y1y
2
2 + (Al2 +Blt+ Ct2)y2

1x
2
2

+ (2Alm+B(lu+mt) + 2Ctu)y2
1x2y2 + (Am2 +Bmu+ Cu2)y2

1y
2
2

We then wish to check that the above expansion of f3 is equal to

f1f2 = aαx2
1x

2
2 + aβx2

1x2y2 + aγx2
1y

2
2 + bαx1y1x

2
2 + bβx1y1x2y2

+ bγx1y1y
2
2 + cαy2

1x
2
2 + cβy2

1x2y2 + cγy2
1y

2
2

The reader may check for coefficient equality for all terms, but here I will confirm coefficient equality
for two of the terms:

15Although r = 0, I present these formulae with the r terms to gesture to their inherent symmetry. In the
composition algorithm given in Section 6.1.1. instances of r are removed for efficiency.
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1. (Aj2 +Bjr + Cr2)x2
1x

2
2

?
= aαx2

1x
2
2

⇒ Aj2 +Bjr + Cr2 ?
= aα

2. (2Alm+B(lu+mt) + 2Ctu)y2
1x2y2

?
= cβy2

1x2y2

⇒ 2Alm+B(lu+mt) + 2Ctu
?
= cβ

We draw from the definitions for A, B, C, g, h, w, j, r, s, t, and u, and from the identities defined
by the three conditions on k, l, and m.

To check the first equality, Aj2 +Bjr + Cr2 ?
= aα:

Aj2 +Bjr + Cr2 = (st− ru)j2 + ((ju+mr)− (kt+ ls))jr + (kl − jm)r2

= (st− 0)j2 + ((ju+mr)− (kt+ ls))0 + (kl − jm)0

= stj2

=
a

w

α

w
w2

= aα

To check the second equality, 2Alm+B(lu+mt) + 2Ctu
?
= cβ:

2Alm+B(lu+mt) + 2Ctu = 2(st− ru)lm+ ((ju+mr)− (kt+ ls))(lu+mt) + 2(kl − jm)tu

= 2lmst− 2lmru+ jlu2 + jmtu+ lmru+m2rt− kltu− kmt2

− l2su− lmst+ 2kltu− 2jmtu

= lmst− lmru+ jlu2 + lmru+m2rt− kmt2 − l2su+ kltu− jmtu
= lmst− 0 + jlu2 + 0 + 0− kmt2 − l2su+ kltu− jmtu
= lmst+ jlu2 − kmt2 − l2su+ kltu− jmtu
= (kltu− kmt2 − l2su+ lmst) + jlu2 − jmtu
= (kt− ls)(lu−mt) + jlu2 − jmtu
= (kt− ls)(lu−mt) + ju(lu−mt)
= (kt− ls)c+ juc

= hc+ juc

= hc+ w
g

w
c

= c(h+ g)

= c

(
1

2
(b+ β)− 1

2
(b− β)

)
= cβ

The reader may similarly verify the equality of the other coefficients, and therefore we confirm that
f3 = f1f2.

There are several notes to make about this construction.
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The first, and most important, is that the system of equations defining k, l, and m has infinite
solutions. However, all of the solutions are in the same equivalence class, and they will each reduce
to the same binary quadratic form.

Second, we have the observation that if we wish to reconstruct f1 and f2 from g, h, w, j, k, l, m,
r, s, t, and u, we note that det(M1) and det(M2) recover a and α respectively, det(M3)− det(M4)
and det(M3) + det(M4) recover b and β respectively, and det(M6) and det(M5) recover c and γ
respectively.16 So f1 and f2 can be represented using the determinants of the six submatrices of M :

f1 = ax2
1 + bx1y1 + cy2

1

= (js− kr)x2
1 + ((ju−mr)− (kt− ls))x1y1 + (lu−mt)y2

1

= det(M1)x2
1 + (det(M3)− det(M4))x1y1 + det(M6) y2

1

f2 = αx2
2 + βx2y2 + γy2

2

= (jt− lr)x2
2 + ((ju−mr) + (kt− ls))x2y2 + (ku−ms)y2

2

= det(M2)x2
2 + (det(M3) + det(M4))x2y2 + det(M5) y2

2

6.1.1 The composition algorithm

Given f1 = (a, b, c) and f2 = (α, β, γ), the composition algorithm for f1f2 = f3 is as followsa:

1. Set g = 1
2 (b+ β), h = − 1

2 (b− β), and w = gcd(a, α, g).

2. Set j = w, s = a
w , t = α

w , and u = g
w .

3. Solve (tu)k ≡ hu+ sc mod st, the solutions to which have the form k = µ+ νn for all
n ∈ Z.b Store µ and ν.

4. Solve (tν)n ≡ h − tµ mod s, the solutions to which have the form n = λ + σn′ for all
n′ ∈ Z. Store λ.

5. Set k = µ+ νλ, l = kt−h
s , and m = tuk−hu−cs

st .

6. Set A = st, B = ju− (kt+ ls), and C = kl − jm.

7. Set f3 = (A,B,C), and return f3.

aNote that because r = 0, the variable r does not appear in this algorithm, despite appearing in the
explanation of composition in Section 6.1.

bSee Appendix 7.4 for one method of solving such an equation.

6.2 Composition and representation of integers

Consider a composition

f1f2 = f3

16Note that recovering b, β, c, and γ uses the three conditions on k, l, and m.

19



where

f1 = ax2
1 + bx1y1 + cy2

1 , f2 = αx2
2 + βx2y2 + γy2

2 , and f3 = AX2 +BXY + CY 2

In Section 2.3, we saw that a binary quadratic form represents certain integers, and a representation
of an integer n by a form f is a solution (x, y) ∈ Z2 to the equation

ax2 + bxy + cy2 = n

Recall that if two forms are equivalent then they represent the same integers. If f3,nr is the non-
reduced form found by composing f1 and f2 using the algorithm in section 6.1, and if, for a given
(x1, y1) and (x2, y2), f1(x1, y1) = n1 and f2(x2, y2) = n2, and if X,Y are defined as they were in
section 6.1, then f3,nr(X,Y ) = n1n2. Note that this is not necessarily true for the reduced form f3,r,
which is found by submitting f3,nr to the reduction algorithm. However, n1n2 will be representable
by f3,r under some different set of integers (X ′, Y ′) because f3,nr and f3,r are in the same equivalence
class and therefore represent the same set of integers.

6.3 Squaring

Section 6.1 laid out the general case for composing two primitive positive definite binary quadratic
forms. When composing a form with itself, however, many of the steps in the composition algorithm
simplify. This is further the case when squaring a form whose discriminant is the negative of a prime
number. The Chia VDF restricts its discriminants to negative primes, so in this section I derive
the simplified squaring algorithm (assuming a negative prime discriminant) as a special case of the
composition algorithm.

Let f = (a, b, c). Applying the composition algorithm, f = f1 = (a, b, c) and f = f2 = (α, β, γ) such
that α = a, β = b, and γ = c.

Step 1 (from the composition algorithm):

1. Set g = 1
2 (b+ β), h = − 1

2 (b− β), and w = gcd(a, α, g).

Because b = β and a = α, this simplifies to:

1. Set g = b, h = 0, and w = gcd(a, b).

In Chia’s VDF, gcd(a, b) = 1 in all cases due to the generation method of the discriminant. This
is because the discriminant is chosen as the negative of a prime number. We therefore note the
following: Let ∆ = −p, where p is prime, and ∆ = b2 − 4ac. Let a and b have a common factor n.
Then a = na′ and b = nb′ for some a′, b′ ∈ Z, and ∆ = n(b′b − 4a′c). Therefore ∆ is divisible by
n. But the only factors of ∆ are ±1 and ±p. Because a, b < |∆|, a, b < p. Therefore n = ±1, and
gcd(a, b) = 1. The first composition step thus becomes:

1. Set g = b, h = 0, and w = 1.

Step 2 (from the composition algorithm):

2. Set j = w, s = a
w , t = α

w , and u = g
w .
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This simplifies to

2. Set j = 1, s = a, t = a, and u = b.

Step 3 (from the composition algorithm):

3. Solve (tu)k ≡ hu+ sc mod st, the solutions to which have the form k = µ+ νn for all n ∈ Z.
Store µ and ν.

This simplifies to

3. Solve (ab)k ≡ ac mod a2, the solutions to which have the form k = µ+ νn for all n ∈ Z. Store
µ and ν.

This linear congruence simplifies further because a may be factored out of all three terms. Observe
the following proof: Let ax ≡ b mod m. Let n be a factor of a, b, and m. Then na′x ≡ nb′ mod nm′

for some a′, b′,m′ ∈ Z, and so nm′ divides na′x − nb′ and nm′k = na′x − nb′ for some k ∈ Z.
Dividing by n, m′k = a′x − b′. Therefore m′ divides a′x − b′ and a′x ≡ b′ mod m′. The third
composition step thus becomes:

3. Solve bk ≡ c mod a, the solutions to which have the form k = µ + νn for all n ∈ Z. Store µ
and ν.

Finally, although the linear congruence has infinite solutions of the form k = µ+νn, ranging through
all n ∈ Z, we will see in Step 5 that the term νn is not needed in this algorithm, and therefore we
only store µ.

3. Solve bk ≡ c mod a, the solutions to which have the form k = µ+ νn for all n ∈ Z.17 Store µ.

Step 4 (from the composition algorithm):

4. Solve (tν)n ≡ h− tµ mod s, the solutions to which have the form n = λ+ σn′ for all n′ ∈ Z.
Store λ.

This simplifies to

4. Solve (aν)n ≡ −aµ mod a, the solutions to which have the form n = λ + σn′ for all n′ ∈ Z.
Store λ.

As in Step 3, we factor out a, giving

4. Solve νn ≡ −µ mod 1, the solutions to which have the form n = λ+ σn′ for all n′ ∈ Z. Store
λ.

But any two integers are equivalent modulo 1. To see this, let a, b ∈ Z. Then a − b ∈ Z and so 1
divides a− b, and the remainder of a− b divided by 1 is 0. Therefore, there is only one equivalence
class modulo 1: [0] = Z. Therefore we apply the solution {λ = 0, σ = 0}. The fourth composition
step thus becomes:

17See Appendix 7.4 for one method of solving such an equation.
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4. Set λ = 0.

Step 5 (from the composition algorithm)

5. Set k = µ+ νλ, l = kt−h
s , and m = tuk−hu−cs

st .

Because λ = 0, νλ = 0 and k = µ. This is why we did not store ν in Step 3. The expressions for l
and m also simplify, giving

5. Set k = µ, l = µ, and m = bµ−c
a .

Step 6 (from the composition algorithm)

6. Set A = st, B = ju− (kt+ ls), and C = kl − jm.

These become

6. Set A = a2, B = b− 2aµ, and C = µ2 − bµ−c
a .

Step 7 (from the composition algorithm)

7. Set f3 = (A,B,C), and return f3.

Here we simply return f3, the square of f :

7. Set f3 = (A,B,C), and return f3.

Notice that in the interest of efficiency, we may omit steps 1, 2, 4, and 5, which are superfluous. In
the following algorithm, we apply these changes.

6.3.1 The squaring algorithm

Here is the completed squaring algorithm, as derived above.18 This algorithm assumes a discriminant
which is the negative of a prime number.

Given a primitive positive definite form f = (a, b, c), the squaring algorithm to find f2 is as
follows:

1. Solve bk ≡ c mod a, the solutions to which have the form k = µ + νn for all n ∈ Z.a

Store µ.

2. Set A = a2, B = b− 2aµ, and C = µ2 − bµ−c
a .

3. Return (A,B,C), which is the square of f .

aSee Appendix 7.4 for one method of solving such an equation.

18Notice that here we omit steps 1, 2, 4, and 5 from above. And so step 3 above has become step 1 in the below
algorithm, and steps 6 and 7 above have become steps 2 and 3 in the below algorithm.
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7 Appendix

7.1 Special matrices

Definition 7.1 (GL(2,Z)). GL(2,Z) is the set of all invertible 2× 2 matrices with integer entries
whose determinants are equal to ±1.

Definition 7.2 (SL(2,Z)). SL(2,Z) is a subgroup of GL(2,Z) defined as the set of all 2×2 matrices
with integer entries whose determinants are equal to 1. The two generating matrices of SL(2,Z) are

S =

(
0 −1
1 0

)
and T =

(
1 1
0 1

)
.

7.2 Orbits

Let S be a non-empty set and let G be a group. A left action of G on S is a mapping

G× S → S, (g, s) 7→ gs ∈ S

which has the following properties:

• 1Gs = s for all s ∈ S

• for g, h ∈ G and s ∈ S, g(hs) = (gh)s

Given a left action of G on S, two elements s and t in S are equivalent if there is an element g ∈ G
such that t = gs. This is an equivalence relation on S, and the equivalence class {gs : g ∈ G} is
called the G-orbit of s.

We have an analogous definition for a right action of a group G on a set S. Given a right action of
G on S we define the G-orbit of s in the same way as with left actions.

Orbits should bring to mind ring ideals, gesturing toward the deep connection between ideal class
groups and form class groups.

7.3 Ideal class group definitions

Here are various definitions relating to the content about ideal class groups in Section 4. This
information is included to acknowledge the relationship between ideal class groups and form class
groups, and to satisfy those curious about the topic, but an understanding of this material is not
necessary for implementing class group composition of binary quadratic forms.

Definition 7.3 (Algebraic number field). An algebraic number field is a finite extension Q(α1, ..., αn)
of Q, where α1, ..., αn are algebraic numbers.
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Definition 7.4 (Quadratic extension field). A quadratic extension field is an algebraic number field
Q(
√
z) of degree 2 over Q, such that

√
z is the root of some irreducible quadratic equation whose

coefficients are in Z.

Definition 7.5 (Ring of integers). The ring of integers of an algebraic number field K is the set of
elements in K which are roots of monic polynomials with integer coefficients.

Examples of rings of integers:

• For K = Q(i), where i =
√
−1, the ring of integers of K is OK = {a+ bi | a, b ∈ Z}.

• In general, for K = Q(
√
d), if d ≡ 1 mod 4, then OK = {a + b 1+

√
d

2 | a, b ∈ Z}, and if

d ≡ 2, 3 mod 4, then OK = {a+ b
√
d | a, b ∈ Z}.

Definition 7.6 (Ideal). An ideal I of a ring R is an additive subgroup of R which multiplicatively
absorbs all elements in R which are outside of I. In other words, for every x ∈ R and y ∈ I, xy ∈ I
and yx ∈ I.

Examples of ideals:

• In the ring Z, the ideals of Z have the form nZ for n ∈ Z.

• In Z6 (i.e. the integers modulo 6), the set I = {0, 2, 4} is an ideal.

Definition 7.7 (Principal ideal). An ideal I of a ring R is called a (right) principal ideal if there
is an element a ∈ R such that I = aR = {ar | r ∈ R}. In other words, the ideal is generated by the
element a. If R is non-commutative, then R can have left principal ideals, right principal ideals, or
two-sided principal ideals, given by (respectively):

• Ra = {ra | r ∈ R}

• aR = {ar | r ∈ R}

• RaR = {r1as1 + ...+ rnasn | r1, s1, ..., rn, sn ∈ R}

If R is commutative then the three above definitions are equivalent. All rings have principal ideals.

Examples of principal ideals:

• The set of even integers, 2Z, is a principal ideal of Z generated by ±2.

• In fact, every ideal of the ring of integers Z is a principal ideal.

• In the ring Z(
√
−3) = {a+ b

√
−3 | a, b ∈ Z}, the ideal generated by

√
−3 is a principal ideal.

To define fractional ideals, I first explain modules.
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Definition 7.8 (Module). A module M over a ring R is a generalization of a vector space over a
field, with the ring elements playing the role of the field scalars. A left R-module, M , is an abelian
group (M,+) with a scalar multiplication operation ∗ : R ×M → M which satisfies the following
conditions for all r, s ∈ R and m,n ∈M :

• r ∗ (m+ n) = r ∗m+ r ∗ n

• (r + s) ∗m = r ∗m+ s ∗m

• (rs) ∗m = r ∗ (s ∗m)

• 1R ∗m = m

A right R-module is the same as above except the ring R acts on the righthand side of the module
instead of on the lefthand side. If R is commutative, then the left and right R-modules are the same
and the module is simply called an R-module.

Examples of modules:

• For a field F , the concepts of a vector space over F and an F -module are identical.

• Any ideal I of a ring R is an R-module.

Definition 7.9 (Submodule). If M is a module of a ring R, and S is a subgroup of M , then S is
an R-submodule if for any s ∈ S and any r ∈ R, the product r ∗ s is in S (for a left R-submodule)
or the product s ∗ r is in S (for a right R-submodule).

Definition 7.10 (Fractional ideal). Let K be an algebraic number field with ring of integers OK ,
and let TK be some subset of K. TK is a fractional ideal of OK if it is a finitely-generated OK-
module such that there exists some nonzero r ∈ OK where for all t ∈ TK , rt ∈ OK . Moreover, the
set T ′K = rTK is an ideal of OK , and TK = r−1T ′K .

The element r can be thought of as “clearing the denominator” of all elements in TK to produce
elements in OK .

Examples of fractional ideals:

• Consider the algebraic number field Q with ring of integers Z. The subset of Q defined by
I = {...,− 15

7 ,−
10
7 ,−

5
7 , 0,

5
7 ,

10
7 ,

15
7 , ...} is a fractional ideal of Z, with ±7 ∈ Z being the element

which clears the denominator such that for all t ∈ TK , 7t ∈ Z.

• In general, fractional ideals in Q have the form {rZ | r ∈ Q}.

• The set Q is not a fractional ideal because its elements can have arbitrarily large denominators.

Definition 7.11 (Principal fractional ideal). Given an algebraic number field K and its ring of
integers OK , a principal fractional ideal is a fractional ideal generated by a single element k ∈ K
such that the principal fractional ideal is the set {ka | a ∈ OK}.
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Given an algebraic number field, K, the set of principal fractional ideals, PK , is a subgroup of the
group of fractional ideals, JK .

To define quotient groups, I first explain cosets.

Definition 7.12 (Right coset of a subgroup in a group). Let S be a subgroup of a group G. Let
s ∈ S, and g ∈ G. The congruence class of g modulo S, i.e. Sg = {sg | s ∈ S}, is the right coset of
S in G.

Definition 7.13 (Left coset of a subgroup in a group). Let S be a subgroup of a group G. Let
s ∈ S, and g ∈ G. gS = {gs | s ∈ S} is the left coset of S in G.

Definition 7.14 (Quotient group). Let N be a normal subgroup of a group G. Then G/N is the
quotient group of G by N , and it denotes the set of all right cosets of N in G. The operation on the
group is defined as (Na)(Nb) = Nab.19

One can think of quotient groups as grouping together similar elements of a larger group into
equivalence classes.

Examples of quotient groups:

• Let G be the integers modulo 6 under addition, i.e. G = {0, 1, 2, 3, 4, 5}, and let N be the
subgroup {0, 3}, noting that N is normal because G is abelian. G/N = {g + N | g ∈ G} =
{{0, 3}, {1, 4}, {2, 5}} = {0 +N, 1 +N, 2 +N}.

• Let G = Z and N = 2Z, i.e. G is the set of integers and N is the set of even integers. N is
a normal subgroup because G is abelian. G/N = {2Z, 2Z + 1}, with the two cosets being the
even and odd integers, respectively.

7.4 Solving linear congruences

In this section, I outline one way of solving linear congruences of the form ax ≡ b mod m.

First, using the extended Euclidean algorithm, we may find integers d, e, and g such that

g = gcd(a,m) and da+ em = g

Then note the following theorem:

Theorem 7.1. The congruence ax ≡ b mod m has a solution if and only if gcd(a,m) divides b.

If the linear congruence ax ≡ b mod m has a solution, then by Theorem 7.1 there exists some q ∈ Z
such that qg = b. Therefore we have

19Note that because N is normal, we could have equivalently defined G/N to be the set of all left cosets of N in G.
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da+ em = g ⇒ qda+ qem = qg ⇒ qda+ qem = b

Taking the last equation mod m, we have

aqd ≡ b mod m

Therefore qd is one solution to the congruence relation. However, the congruence ax ≡ b mod m
has an infinite set of solutions — these solutions have the form k = µ + νn, where µ is qd mod m,
ν = m

g , and n ranges over all of Z. To check these solutions, first note that because g = gcd(a,m),
g divides a and so there exists some w ∈ Z such that a = wg. Then

ax = a(qd+
m

g
n)

= aqd+ a
m

g
n

= aqd+ wmn

≡ b mod m

7.4.1 Linear congruence algorithm

The following is an example algorithm for solving a linear congruence of the form ax ≡
b mod m:

1. Use the extended Euclidean algorithm to find g, d, e, where g = gcd(a,m) and da+em =
g.

2. Compute q =
⌊
b
g

⌋
, and set r = b % g.

3. If r 6= 0, return “The congruence has no solution.” End algorithm.

4. Else set µ = qd % m, and set ν = m
g . Return µ, ν.

The set of solutions of the linear congruence then have the form x = µ+ νn, where n ranges
over all of Z.
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